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Agenda

• Part 1 (Today):

• Quick introduction and theory review:

• The Rendering Equation

• Bidirectional reflection distribution functions

• Pathtracing algorithm overview

• Implementing parallel ray-tracing

• Recursion versus iteration 

• Iterative ray-tracing

• Part 2 (Wednesday):

• Distributed ray-tracing/Monte-carlo integration, more on BRDFs

• Implementing parallel path-tracing

• Path versus ray parallelization, ray compaction

• Parallel computation, BRDF evaluation, and you!

• Parallel approaches to spatial acceleration structures

• Stack-less KD-tree construction and traversal

• Bounding volume hierarchies
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Path-tracing: Quick Introduction and Theory Review

Octane Render Test
Refractive Software/Bertrand Benoit 2011
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The Rendering Equation
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•Super high level meaning: [outgoing light] = [incoming light] + [emitted light] 
+ [absorbed light]

= Outgoing light

= Emitted light

= Integrate over a hemisphere in the direction w over the 
given point p

= BRDF (Bidirectional Reflectance Distribution Function

= Incoming Light

= Attenuate incoming light based on the cosine of the angle 
between the normal n and the incoming light direction wi
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Bidirectional Reflectance Distribution Functions
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•Defines how light is reflected at a 
given opaque surface 

•Can be extended with transmittance 
to produce the BSDF: Bidirectional 
Scattering Distribution Function

•Reflectance models:
•Ideal Specular (think mirrors)
•Ideal Diffuse
•Specular/Glossy (won’t cover 

today)
•Phong Model
•Microfacet Models
•Torrance-Sparrow Model

Monday, September 24, 12



Reflectance Models: Ideal Specular
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•Ideal specular reflection: incoming 
light and outgoing light make the 
same angle across the surface 
normal, so angle of incidence = 
angle of reflection

•Fresnel’s law: defines the behavior of 
light when moving between mediums 
with different indices of refraction.
•Can be approximated with Shlick’s 

approximation.
Photorealizer

Peter Kutz  2012
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Reflectance Models: Ideal Diffuse
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•Ideal diffuse reflection: light is equally likely to be 
reflected in any output direction within a 
hemisphere oriented along the surface normal over 
a given point

•Think: wall paint.
•Theoretical models:
•Micro-facet distribution
•Subsurface reflection

GPU Path Tracer
Peter Kutz/Yining Karl Li 2012
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Path-tracing 
Algorithm

• Solves the rendering equation, 
which was first proposed by James 
Kajiya in 1986.

• Generalizes ray tracing to produce 
accurate, unbiased images with full 
global illumination. Path tracing 
allows for effects like soft shadows, 
DOF, antialiasing for free.

• Potentially extremely slow on the 
CPU and has only become a 
feasible technique in recent years 
due to faster and faster hardware.

8 The Third and the Seventh
Alex Roman

Monday, September 24, 12



Path-tracing Algorithm

•1. For each pixel, shoot a ray into the scene

•2. For each ray, trace until the ray hits a surface. Upon hitting a surface, 
sample the emittance and BRDF for the surface and then send the ray in a 
new random direction

•3. Continue bouncing each ray around until a recursion depth is reached

•4. Repeat steps 1-3 over and over and continuously accumulate the result 
until a final image begins to converge
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TAKUA Render
Yining Karl Li 2012

The random “Monte Carlo” method that path tracers use means that they can 
take some time to converge to a final image

1 Iteration
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The random “Monte Carlo” method that path tracers use means that they can 
take some time to converge to a final image

20 Iterations

TAKUA Render
Yining Karl Li 2012
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The random “Monte Carlo” method that path tracers use means that they can 
take some time to converge to a final image

250 Iterations

TAKUA Render
Yining Karl Li 2012
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Path-tracing: GPU Motivation

•Even with a naive implementation, GPU path tracing can converge fast 
enough to be interactive! Contrast with CPU implementations, which can 
take dozens of minutes to hours to converge. 

•Even more performance can be extracted through the use of spatial 
acceleration structures such as stack-less KD-trees or BVH. 

•Single biggest constraint is memory: path tracing requires keeping 
everything in a scene in memory at once, which is not an issue on the CPU 
with 16 Gb RAM available, but can become a problem on the GPU with 
typically <1.5 Gb RAM available
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• Brigade Render by OTOY
• Arion Render by RandomControl
• Octane Render by Refractive Software

Current Commercial GPU Path-tracers

Brigade Render
OTOY/Sam Lapere 2012

Arion Render
RandomControl/Kuba Dabrowski 2011

Octane Render
Refractive Software/Bertrand Benoit 2011
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CUDA Path-tracing 
Demos

• Peter and Karl’s GPU Path Tracer: 
https://vimeo.com/41109177

• BRIGADE Renderer:             
http://www.youtube.com/watch?
feature=player_embedded&v=FJLy
-ci-RyY
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GPU Path Tracer
Peter Kutz/Yining Karl Li 2012
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Parallel Ray-tracing: A stepping stone to path-tracing

Pov-Ray Glasses
Gilles Tran 2006
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Basic Ray-tracing Algorithm

•1. For each pixel, shoot a ray into the scene

•2. For each ray, trace until the ray hits a surface. 

•3. For each intersection, cast a shadow feeler ray to each light source to see 
if each light source is visible and shade the current pixel accordingly

•4. If the surface is diffuse, stop. If the surface is reflective, shoot a new ray 
reflected across the normal from the incident ray

•5. Repeat steps 1-4 over and over until a maximum tracing depth has been 
reached or until the ray hits a light or a diffuse surface
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Recursive Ray-tracing

•The most obvious way to implement basic raytracing is through a purely 
recursive approach:

18

color3 rayTrace(int depth, ray r, vector<geom> objects, vector<lights> light_sources){

[determine closest intersected object j, intersection normal n, intersection point p]

color = black

if(object j is reflective){
reflected_r = reflect_ray(r, normal, p);
reflected_color = rayTrace(depth+1, reflected_r, objects, light_sources); 
color = reflected_Color;

}

for each light l in light_sources{
if shadow_ray(p, l)==true{

light_contribution = calculate_light_contribution(p,l,n,j);
color += light_contribution;

}
}

return color;
}
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Parallelizing Ray-tracing

•Ray-tracing is an embarrassingly parallel problem!

•Tracing each pixel in the image is computationally independent from all 
other pixels

•Tracing a single pixel is not a terribly computationally intense task, 
there’s simply a lot of tracing that needs to happen

•Solution: parallelize along pixels! 

•Launch one thread per pixel, trace hundreds to thousands of pixels in 
mass parallel!

19
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Parallelizing Ray-tracing
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Wait, we have a problem... 
CUDA does not support recursion!*

*Except on Fermi and newer
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Iterative Ray-tracing

•Iterative ray-tracing: a slightly less intuitive ray-tracing algorithm that does 
not need recursion!

•Analogy: think breadth first search versus depth first search

•Recursive model:

21

Trace all ray 
bounces in first 

ray path
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Iterative Ray-tracing

•Iterative ray-tracing: a slightly less intuitive ray-tracing algorithm that does 
not need recursion!

•Analogy: think breadth first search versus depth first search

•Recursive model:

22

Trace all ray 
bounces in 

second ray path

Monday, September 24, 12



Iterative Ray-tracing

•Iterative ray-tracing: a slightly less intuitive ray-tracing algorithm that does 
not need recursion!

•Analogy: think breadth first search versus depth first search

•Recursive model:
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etc.

Trace all ray 
bounces in third 

ray path
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Iterative Ray-tracing

•Iterative ray-tracing: a slightly less intuitive ray-tracing algorithm that does 
not need recursion!

•Analogy: think breadth first search versus depth first search

•Iterative model:

24

Trace first ray 
bounce in all 

ray paths
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Iterative Ray-tracing

•Iterative ray-tracing: a slightly less intuitive ray-tracing algorithm that does 
not need recursion!

•Analogy: think breadth first search versus depth first search

•Iterative model:

25

Trace second 
ray bounce in 
all ray paths
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Iterative Ray-tracing

•Iterative ray-tracing: a slightly less intuitive ray-tracing algorithm that does 
not need recursion!

•Analogy: think breadth first search versus depth first search

•Iterative model:
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Trace third ray bounce 
in all ray paths, and so 

on and so forth
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Iterative Ray-tracing

•Implement ray-tracing as a while or for loop and cache the current ray 
for use in the next iteration of the loop:
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color3 rayTrace(int depth, ray r, vector<geom> objects, vector<lights> light_sources){
ray currentRay = r;
color = black;

for(int i=0; i<depth; i++){

[determine closest intersected object j, intersection normal n, intersection point 
p]

if(object j is reflective){
reflected_r = reflect_ray(r, normal, p); 

}
for each light l in light_sources{

if shadow_ray(p, l)==true{
color += color * calculate_light_contribution(p,l,n,j); 

}
}

}
return color;

}
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Parallelizing Ray-tracing
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So we can just implement that entire 
interative ray-tracing algorithm in a 

CUDA kernal and we’re done, right?
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Parallelizing Ray-tracing
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So we can just implement that entire 
interative ray-tracing algorithm in a 

CUDA kernal and we’re done, right?

Well yes, BUT...
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Parallel Ray-Tracing Quirks: Wasted Cycles
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Text

•How many bounces does each 
ray path make before 
terminating? 

TAKUA Render
Yining Karl Li 2012
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Parallel Ray-Tracing Quirks: Wasted Cycles

31

Text

•How many bounces does each 
ray path make before 
terminating?

4 bounces?

TAKUA Render
Yining Karl Li 2012
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Parallel Ray-Tracing Quirks: Wasted Cycles
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Text

•How many bounces does each 
ray path make before 
terminating?

3 bounces?

TAKUA Render
Yining Karl Li 2012
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Parallel Ray-Tracing Quirks: Wasted Cycles
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Text

•How many bounces does each 
ray path make before 
terminating?

2 bounces?

TAKUA Render
Yining Karl Li 2012
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Parallel Ray-Tracing Quirks: Wasted Cycles
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Text

•How many bounces does each 
ray path make before 
terminating?

1 bounce?

TAKUA Render
Yining Karl Li 2012
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Parallel Ray-Tracing Quirks: Wasted Cycles
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Text

•How many bounces does each 
ray path make before 
terminating?

No bounces?

TAKUA Render
Yining Karl Li 2012
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Parallel Ray-Tracing Quirks: Wasted Cycles
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Text

•How many bounces does each 
ray path make before 
terminating?

•We have no idea how many 
bounces each ray path may 
take!

•What does this uncertainty 
imply about parallelizing by 
pixels?

TAKUA Render
Yining Karl Li 2012
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Parallel Ray-Tracing Quirks: Wasted Cycles
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•Remember, in CUDA, we can only launch a finite number of blocks at a 
time, and must wait for blocks to complete before launching more.

•If some threads need to trace more bounces than others, then potentially a 
large number of threads will spend the majority of the time idling. 

•Conclusion: parallelizing by pixels is one possible approach, but ultimately a 
naive one.

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6

Bounce 1 Bounce 1 DONE Bounce 1 Bounce 1 Bounce 1

Bounce 2 DONE Bounce 2 DONE DONE

Bounce 3 DONE

Bounce 4

DONE
WASTED CYCLES
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Ray Parallelization
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•Solution: parallelize by rays, not pixels!

•Instead of a single kernel launch that traces an entire ray path, do multiple 
kernel launches that trace individual bounces!

•1. Construct pool of rays that need to be intersection tested

•2. Construct grid of colors and unaccumulated colors

•3. Launch a kernel that traces ONE bounce and records the next ray into 
the ray pool

•4. Remove terminated rays from the ray pool through string compaction 
type process

•5. Repeat 

Monday, September 24, 12



•With each iteration of the ray-trace, we need less threads as rays 
terminate! As a result, each iteration requires fewer blocks, meaning each 
iteration executes faster than the previous iteration.

•Well, there are a few rare edge cases where this approach does not 
provide a performance boost. Can you think of any?

Ray Parallelization

39

Iteration 1: 10 blocks executing in 
groups of 4 = 3 batches 

Iteration 2: 4 blocks executing in 
groups of 4 = 1 batch
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Ray Parallelization: Super Simple Example
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First Kernel Launch

Ray Pool:
Ray 1, Ray 2, Ray 3

Threads Needed:
3

Result:

Terminated Rays:
Ray 1

TAKUA Render
Yining Karl Li 2012
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Ray Parallelization: Super Simple Example
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Second Kernel Launch

Ray Pool:
Ray 2, Ray 3

Threads Needed:
2

Result:

Terminated Rays:
Ray 1

TAKUA Render
Yining Karl Li 2012
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Ray Parallelization: Super Simple Example
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Third Kernel Launch

Ray Pool:
Ray 2, Ray 3

Threads Needed:
2

Result:

Terminated Rays:
Ray 1, Ray 3

TAKUA Render
Yining Karl Li 2012
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Ray Parallelization: Super Simple Example
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Fourth Kernel Launch

Ray Pool:
Ray 2

Threads Needed:
1

Result:

Terminated Rays:
Ray 1, Ray 3, Ray 2

TAKUA Render
Yining Karl Li 2012

Monday, September 24, 12



Parallel Ray-Tracing Quirks: Memory 
Management

44

•Assume we cudaMemcpy() all of 
our geometry and materials and 
other scene assets from host 
memory to device global 
memory.

•What happens in this scene on 
the first bounce?

TAKUA Render
Yining Karl Li 2012
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Parallel Ray-Tracing Quirks: Memory 
Management

45

•Assume we cudaMemcpy() all of 
our geometry and materials and 
other scene assets from host 
memory to device global 
memory.

•What happens in this scene on 
the first bounce?

•A lot of rays are hitting the 
same objects, meaning a lot of 
threads are concurrently trying 
to access the same places in 
global memory!

TAKUA Render
Yining Karl Li 2012

Monday, September 24, 12



Parallel Ray-Tracing Quirks: Memory 
Management
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•Possible Solutions:

•In distributed raytracing scenarios: since the first bounce will always 
involve the same raycasts from the camera, cache the result of the 
first bounce and recycle the result .

•“First bounce cache, second bounce thrash”

•If the scene is sufficiently small, cache geometry data in shared 
memory.

•Why might this be a bad idea in some cases?
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