
Parallel Physically Based Path-tracing and Shading
Part 1 of 2

CIS565 Fall 2012
University of Pennsylvania
by Yining Karl Li

1
Monday, September 24, 12

Agenda

• Part 1 (Today):

• Quick introduction and theory review:

• The Rendering Equation

• Bidirectional reflection distribution functions

• Pathtracing algorithm overview

• Implementing parallel ray-tracing

• Recursion versus iteration

• Iterative ray-tracing

• Part 2 (Wednesday):

• Distributed ray-tracing/Monte-carlo integration, more on BRDFs

• Implementing parallel path-tracing

• Path versus ray parallelization, ray compaction

• Parallel computation, BRDF evaluation, and you!

• Parallel approaches to spatial acceleration structures

• Stack-less KD-tree construction and traversal

• Bounding volume hierarchies

2
Monday, September 24, 12

3

Path-tracing: Quick Introduction and Theory Review

Octane Render Test
Refractive Software/Bertrand Benoit 2011

Monday, September 24, 12

The Rendering Equation

4

•Super high level meaning: [outgoing light] = [incoming light] + [emitted light]
+ [absorbed light]

= Outgoing light

= Emitted light

= Integrate over a hemisphere in the direction w over the
given point p

= BRDF (Bidirectional Reflectance Distribution Function

= Incoming Light

= Attenuate incoming light based on the cosine of the angle
between the normal n and the incoming light direction wi

Monday, September 24, 12

Bidirectional Reflectance Distribution Functions

5

•Defines how light is reflected at a
given opaque surface

•Can be extended with transmittance
to produce the BSDF: Bidirectional
Scattering Distribution Function

•Reflectance models:
•Ideal Specular (think mirrors)
•Ideal Diffuse
•Specular/Glossy (won’t cover

today)
•Phong Model
•Microfacet Models
•Torrance-Sparrow Model

Monday, September 24, 12

Reflectance Models: Ideal Specular

6

•Ideal specular reflection: incoming
light and outgoing light make the
same angle across the surface
normal, so angle of incidence =
angle of reflection

•Fresnel’s law: defines the behavior of
light when moving between mediums
with different indices of refraction.
•Can be approximated with Shlick’s

approximation.
Photorealizer

Peter Kutz 2012

Monday, September 24, 12

Reflectance Models: Ideal Diffuse

7

•Ideal diffuse reflection: light is equally likely to be
reflected in any output direction within a
hemisphere oriented along the surface normal over
a given point

•Think: wall paint.
•Theoretical models:
•Micro-facet distribution
•Subsurface reflection

GPU Path Tracer
Peter Kutz/Yining Karl Li 2012

Monday, September 24, 12

Path-tracing
Algorithm

• Solves the rendering equation,
which was first proposed by James
Kajiya in 1986.

• Generalizes ray tracing to produce
accurate, unbiased images with full
global illumination. Path tracing
allows for effects like soft shadows,
DOF, antialiasing for free.

• Potentially extremely slow on the
CPU and has only become a
feasible technique in recent years
due to faster and faster hardware.

8 The Third and the Seventh
Alex Roman

Monday, September 24, 12

Path-tracing Algorithm

•1. For each pixel, shoot a ray into the scene

•2. For each ray, trace until the ray hits a surface. Upon hitting a surface,
sample the emittance and BRDF for the surface and then send the ray in a
new random direction

•3. Continue bouncing each ray around until a recursion depth is reached

•4. Repeat steps 1-3 over and over and continuously accumulate the result
until a final image begins to converge

9
Monday, September 24, 12

10

TAKUA Render
Yining Karl Li 2012

The random “Monte Carlo” method that path tracers use means that they can
take some time to converge to a final image

1 Iteration

Monday, September 24, 12

11

The random “Monte Carlo” method that path tracers use means that they can
take some time to converge to a final image

20 Iterations

TAKUA Render
Yining Karl Li 2012

Monday, September 24, 12

12

The random “Monte Carlo” method that path tracers use means that they can
take some time to converge to a final image

250 Iterations

TAKUA Render
Yining Karl Li 2012

Monday, September 24, 12

Path-tracing: GPU Motivation

•Even with a naive implementation, GPU path tracing can converge fast
enough to be interactive! Contrast with CPU implementations, which can
take dozens of minutes to hours to converge.

•Even more performance can be extracted through the use of spatial
acceleration structures such as stack-less KD-trees or BVH.

•Single biggest constraint is memory: path tracing requires keeping
everything in a scene in memory at once, which is not an issue on the CPU
with 16 Gb RAM available, but can become a problem on the GPU with
typically <1.5 Gb RAM available

13
Monday, September 24, 12

14

• Brigade Render by OTOY
• Arion Render by RandomControl
• Octane Render by Refractive Software

Current Commercial GPU Path-tracers

Brigade Render
OTOY/Sam Lapere 2012

Arion Render
RandomControl/Kuba Dabrowski 2011

Octane Render
Refractive Software/Bertrand Benoit 2011

Monday, September 24, 12

CUDA Path-tracing
Demos

• Peter and Karl’s GPU Path Tracer:
https://vimeo.com/41109177

• BRIGADE Renderer:
http://www.youtube.com/watch?
feature=player_embedded&v=FJLy
-ci-RyY

15

GPU Path Tracer
Peter Kutz/Yining Karl Li 2012

Monday, September 24, 12

https://vimeo.com/41109177
https://vimeo.com/41109177
http://www.youtube.com/watch?feature=player_embedded&v=FJLy-ci-RyY
http://www.youtube.com/watch?feature=player_embedded&v=FJLy-ci-RyY
http://www.youtube.com/watch?feature=player_embedded&v=FJLy-ci-RyY
http://www.youtube.com/watch?feature=player_embedded&v=FJLy-ci-RyY
http://www.youtube.com/watch?feature=player_embedded&v=FJLy-ci-RyY
http://www.youtube.com/watch?feature=player_embedded&v=FJLy-ci-RyY

16

Parallel Ray-tracing: A stepping stone to path-tracing

Pov-Ray Glasses
Gilles Tran 2006

Monday, September 24, 12

Basic Ray-tracing Algorithm

•1. For each pixel, shoot a ray into the scene

•2. For each ray, trace until the ray hits a surface.

•3. For each intersection, cast a shadow feeler ray to each light source to see
if each light source is visible and shade the current pixel accordingly

•4. If the surface is diffuse, stop. If the surface is reflective, shoot a new ray
reflected across the normal from the incident ray

•5. Repeat steps 1-4 over and over until a maximum tracing depth has been
reached or until the ray hits a light or a diffuse surface

17
Monday, September 24, 12

Recursive Ray-tracing

•The most obvious way to implement basic raytracing is through a purely
recursive approach:

18

color3 rayTrace(int depth, ray r, vector<geom> objects, vector<lights> light_sources){

[determine closest intersected object j, intersection normal n, intersection point p]

color = black

if(object j is reflective){
reflected_r = reflect_ray(r, normal, p);
reflected_color = rayTrace(depth+1, reflected_r, objects, light_sources);
color = reflected_Color;

}

for each light l in light_sources{
if shadow_ray(p, l)==true{

light_contribution = calculate_light_contribution(p,l,n,j);
color += light_contribution;

}
}

return color;
}

Monday, September 24, 12

Parallelizing Ray-tracing

•Ray-tracing is an embarrassingly parallel problem!

•Tracing each pixel in the image is computationally independent from all
other pixels

•Tracing a single pixel is not a terribly computationally intense task,
there’s simply a lot of tracing that needs to happen

•Solution: parallelize along pixels!

•Launch one thread per pixel, trace hundreds to thousands of pixels in
mass parallel!

19
Monday, September 24, 12

Parallelizing Ray-tracing

20

Wait, we have a problem...
CUDA does not support recursion!*

*Except on Fermi and newer

Monday, September 24, 12

Iterative Ray-tracing

•Iterative ray-tracing: a slightly less intuitive ray-tracing algorithm that does
not need recursion!

•Analogy: think breadth first search versus depth first search

•Recursive model:

21

Trace all ray
bounces in first

ray path

Monday, September 24, 12

Iterative Ray-tracing

•Iterative ray-tracing: a slightly less intuitive ray-tracing algorithm that does
not need recursion!

•Analogy: think breadth first search versus depth first search

•Recursive model:

22

Trace all ray
bounces in

second ray path

Monday, September 24, 12

Iterative Ray-tracing

•Iterative ray-tracing: a slightly less intuitive ray-tracing algorithm that does
not need recursion!

•Analogy: think breadth first search versus depth first search

•Recursive model:

23

etc.

Trace all ray
bounces in third

ray path

Monday, September 24, 12

Iterative Ray-tracing

•Iterative ray-tracing: a slightly less intuitive ray-tracing algorithm that does
not need recursion!

•Analogy: think breadth first search versus depth first search

•Iterative model:

24

Trace first ray
bounce in all

ray paths

Monday, September 24, 12

Iterative Ray-tracing

•Iterative ray-tracing: a slightly less intuitive ray-tracing algorithm that does
not need recursion!

•Analogy: think breadth first search versus depth first search

•Iterative model:

25

Trace second
ray bounce in
all ray paths

Monday, September 24, 12

Iterative Ray-tracing

•Iterative ray-tracing: a slightly less intuitive ray-tracing algorithm that does
not need recursion!

•Analogy: think breadth first search versus depth first search

•Iterative model:

26

Trace third ray bounce
in all ray paths, and so

on and so forth

Monday, September 24, 12

Iterative Ray-tracing

•Implement ray-tracing as a while or for loop and cache the current ray
for use in the next iteration of the loop:

27

color3 rayTrace(int depth, ray r, vector<geom> objects, vector<lights> light_sources){
ray currentRay = r;
color = black;

for(int i=0; i<depth; i++){

[determine closest intersected object j, intersection normal n, intersection point
p]

if(object j is reflective){
reflected_r = reflect_ray(r, normal, p);

}
for each light l in light_sources{

if shadow_ray(p, l)==true{
color += color * calculate_light_contribution(p,l,n,j);

}
}

}
return color;

}

Monday, September 24, 12

Parallelizing Ray-tracing

28

So we can just implement that entire
interative ray-tracing algorithm in a

CUDA kernal and we’re done, right?

Monday, September 24, 12

Parallelizing Ray-tracing

29

So we can just implement that entire
interative ray-tracing algorithm in a

CUDA kernal and we’re done, right?

Well yes, BUT...

Monday, September 24, 12

Parallel Ray-Tracing Quirks: Wasted Cycles

30

Text

•How many bounces does each
ray path make before
terminating?

TAKUA Render
Yining Karl Li 2012

Monday, September 24, 12

Parallel Ray-Tracing Quirks: Wasted Cycles

31

Text

•How many bounces does each
ray path make before
terminating?

4 bounces?

TAKUA Render
Yining Karl Li 2012

Monday, September 24, 12

Parallel Ray-Tracing Quirks: Wasted Cycles

32

Text

•How many bounces does each
ray path make before
terminating?

3 bounces?

TAKUA Render
Yining Karl Li 2012

Monday, September 24, 12

Parallel Ray-Tracing Quirks: Wasted Cycles

33

Text

•How many bounces does each
ray path make before
terminating?

2 bounces?

TAKUA Render
Yining Karl Li 2012

Monday, September 24, 12

Parallel Ray-Tracing Quirks: Wasted Cycles

34

Text

•How many bounces does each
ray path make before
terminating?

1 bounce?

TAKUA Render
Yining Karl Li 2012

Monday, September 24, 12

Parallel Ray-Tracing Quirks: Wasted Cycles

35

Text

•How many bounces does each
ray path make before
terminating?

No bounces?

TAKUA Render
Yining Karl Li 2012

Monday, September 24, 12

Parallel Ray-Tracing Quirks: Wasted Cycles

36

Text

•How many bounces does each
ray path make before
terminating?

•We have no idea how many
bounces each ray path may
take!

•What does this uncertainty
imply about parallelizing by
pixels?

TAKUA Render
Yining Karl Li 2012

Monday, September 24, 12

Parallel Ray-Tracing Quirks: Wasted Cycles

37

•Remember, in CUDA, we can only launch a finite number of blocks at a
time, and must wait for blocks to complete before launching more.

•If some threads need to trace more bounces than others, then potentially a
large number of threads will spend the majority of the time idling.

•Conclusion: parallelizing by pixels is one possible approach, but ultimately a
naive one.

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6

Bounce 1 Bounce 1 DONE Bounce 1 Bounce 1 Bounce 1

Bounce 2 DONE Bounce 2 DONE DONE

Bounce 3 DONE

Bounce 4

DONE
WASTED CYCLES

Monday, September 24, 12

Ray Parallelization

38

•Solution: parallelize by rays, not pixels!

•Instead of a single kernel launch that traces an entire ray path, do multiple
kernel launches that trace individual bounces!

•1. Construct pool of rays that need to be intersection tested

•2. Construct grid of colors and unaccumulated colors

•3. Launch a kernel that traces ONE bounce and records the next ray into
the ray pool

•4. Remove terminated rays from the ray pool through string compaction
type process

•5. Repeat

Monday, September 24, 12

•With each iteration of the ray-trace, we need less threads as rays
terminate! As a result, each iteration requires fewer blocks, meaning each
iteration executes faster than the previous iteration.

•Well, there are a few rare edge cases where this approach does not
provide a performance boost. Can you think of any?

Ray Parallelization

39

Iteration 1: 10 blocks executing in
groups of 4 = 3 batches

Iteration 2: 4 blocks executing in
groups of 4 = 1 batch

Monday, September 24, 12

Ray Parallelization: Super Simple Example

40

First Kernel Launch

Ray Pool:
Ray 1, Ray 2, Ray 3

Threads Needed:
3

Result:

Terminated Rays:
Ray 1

TAKUA Render
Yining Karl Li 2012

Monday, September 24, 12

Ray Parallelization: Super Simple Example

41

Second Kernel Launch

Ray Pool:
Ray 2, Ray 3

Threads Needed:
2

Result:

Terminated Rays:
Ray 1

TAKUA Render
Yining Karl Li 2012

Monday, September 24, 12

Ray Parallelization: Super Simple Example

42

Third Kernel Launch

Ray Pool:
Ray 2, Ray 3

Threads Needed:
2

Result:

Terminated Rays:
Ray 1, Ray 3

TAKUA Render
Yining Karl Li 2012

Monday, September 24, 12

Ray Parallelization: Super Simple Example

43

Fourth Kernel Launch

Ray Pool:
Ray 2

Threads Needed:
1

Result:

Terminated Rays:
Ray 1, Ray 3, Ray 2

TAKUA Render
Yining Karl Li 2012

Monday, September 24, 12

Parallel Ray-Tracing Quirks: Memory
Management

44

•Assume we cudaMemcpy() all of
our geometry and materials and
other scene assets from host
memory to device global
memory.

•What happens in this scene on
the first bounce?

TAKUA Render
Yining Karl Li 2012

Monday, September 24, 12

Parallel Ray-Tracing Quirks: Memory
Management

45

•Assume we cudaMemcpy() all of
our geometry and materials and
other scene assets from host
memory to device global
memory.

•What happens in this scene on
the first bounce?

•A lot of rays are hitting the
same objects, meaning a lot of
threads are concurrently trying
to access the same places in
global memory!

TAKUA Render
Yining Karl Li 2012

Monday, September 24, 12

Parallel Ray-Tracing Quirks: Memory
Management

46

•Possible Solutions:

•In distributed raytracing scenarios: since the first bounce will always
involve the same raycasts from the camera, cache the result of the
first bounce and recycle the result .

•“First bounce cache, second bounce thrash”

•If the scene is sufficiently small, cache geometry data in shared
memory.

•Why might this be a bad idea in some cases?

Monday, September 24, 12

47

References

• Tatarinov, Kharlamov, NVIDIA SIGGRAPH 2009 Alternative Rendering Pipelines Presentation:
http://developer.download.nvidia.com/presentations/2009/SIGGRAPH/
Alternative_rendering_pipelines.pdf

• [Kajiya86] Kajiya, “The Rendering Equation”: http://dl.acm.org/citation.cfm?id=15902

• Sam Lapere’s “Ray Tracey’s Blog”: http://raytracey.blogspot.de/

• [Pharr04] Matt Pharr, Greg Humphreys, “Physically Based Rendering”: http://www.pbrt.org/

• Rory Driscoll’s “CodeItNow” Blog: http://www.rorydriscoll.com/2008/08/24/lighting-the-
rendering-equation/

• Stanford University's CS348B: Image Synthesis course materials: https://graphics.stanford.edu/
wikis/cs348b-12

Monday, September 24, 12

http://developer.download.nvidia.com/presentations/2009/SIGGRAPH/Alternative_rendering_pipelines.pdf
http://developer.download.nvidia.com/presentations/2009/SIGGRAPH/Alternative_rendering_pipelines.pdf
http://developer.download.nvidia.com/presentations/2009/SIGGRAPH/Alternative_rendering_pipelines.pdf
http://developer.download.nvidia.com/presentations/2009/SIGGRAPH/Alternative_rendering_pipelines.pdf
http://dl.acm.org/citation.cfm?id=15902
http://dl.acm.org/citation.cfm?id=15902
http://raytracey.blogspot.de/
http://raytracey.blogspot.de/
http://www.pbrt.org/
http://www.pbrt.org/
http://www.rorydriscoll.com/2008/08/24/lighting-the-rendering-equation/
http://www.rorydriscoll.com/2008/08/24/lighting-the-rendering-equation/
http://www.rorydriscoll.com/2008/08/24/lighting-the-rendering-equation/
http://www.rorydriscoll.com/2008/08/24/lighting-the-rendering-equation/
https://graphics.stanford.edu/wikis/cs348b-12
https://graphics.stanford.edu/wikis/cs348b-12
https://graphics.stanford.edu/wikis/cs348b-12
https://graphics.stanford.edu/wikis/cs348b-12

