
Parallel Physically Based Path-tracing and Shading
Part 2 of 2

CIS565 Fall 2012
University of Pennsylvania
by Yining Karl Li

1



Agenda

• Part 1 (Last Monday):

• Quick introduction and theory review:

• The Rendering Equation

• Bidirectional reflection distribution functions

• Pathtracing algorithm overview

• Implementing parallel ray-tracing

• Recursion versus iteration 

• Iterative ray-tracing

• Part 2 (Today):

• Distributed ray-tracing/Monte-carlo integration, more on BRDFs

• Implementing parallel path-tracing

• Path versus ray parallelization, ray compaction

• Parallel computation, BRDF evaluation, and you!

• Parallel approaches to spatial acceleration structures

• Stack-less KD-tree construction and traversal

2



3

Distributed Ray-tracing

“1984” Distributed Ray-tracing Sample Render
Lucasfilm/Pixar 1984



What is distributed ray-tracing?

4

What is wrong with this picture?

*The sample images from slides 4 to 6 are borrowed from Pat Hanrahan’s course 
CS348: Image Synthesis at Stanford University



What is distributed ray-tracing?

5

What is wrong with this picture?

There are no soft shadows, even 
though we have an area light!

Area light source

Occluder

Hard shadow????



What is distributed ray-tracing?

6

Instead, we expect the correct 
solution to look something more 
like this image.

So how do we accomplish this 
effect?

Area light source

Occluder

Nice soft shadow



What is distributed ray-tracing?

7

•Distributed ray-tracing is a ray-tracing method based on the idea of using 
randomly distributed oversampling to produce effects that require 
integrating over some property

•Standard ray-tracing sends one ray per pixel and traces that ray through the 
scene; in distributed ray-tracing, we send multiple rays into the scene from a 
pixel and jitter our multiple rays over some property 

•Use-cases:
•Antialiasing
•Soft shadows
•Motion blur
•Depth of field
•Glossy non-perfect specular reflections
•Etc.



Super-simple distributed ray-tracing application: 
super-sampled antialiasing

8

•Aliasing arises from the fact that objects with smooth curves can only be 
sampled at a discrete number of points

•Solution: for each pixel, sample object surfaces at a number of close, but 
separate points and average the result

•How do we choose to distribute our samples?
•Two methods: we can either use a precomputed, fixed sampling pattern, 

or we can generate random samples on the fly and average the result

Aliased surface Antialiased surface



Fixed sampling patterns

9

•In the antialiasing example, we could simply use a fixed pattern of points 
within a pixel to shoot rays through and then average the result:

Fixed uniform grid Poisson Disc Random Rotated uniform grid

•Advantages: Saves computation time, since we don’t need to generate 
sample points on the fly and can just use pre-cached points

•Disadvantages: Fixed sampling patterns can lead to artifacts and Moire-
type banding problems



Fixed sampling patterns

10

•In the antialiasing example, we could simply use a fixed pattern of points 
within a pixel to shoot rays through and then average the result:

Fixed uniform grid Poisson Disc Random Rotated uniform grid

•Advantages: Saves computation time, since we don’t need to generate 
sample points on the fly and can just use pre-cached points

•Disadvantages: Fixed sampling patterns can lead to artifacts and Moire-
type banding problems

•Who cares if we need more compute? We’re using the GPU, we have 
plenty of compute! We also don’t like caching when we don’t have to!



Extending supersampling to other 
phenomenon...

11

•If we think about it, supersampled antialiasing is simply integrating over all 
possible points on a smooth curved surface in order to produce a result 
that closer approximates reality.

•What if we integrate over something else?



Motion Blur: Integrate over time

12

•Imagine if we jitter our rays in time instead of within a pixel. That is, each 
ray samples a frame of our scene that is slightly offset in time...

Photorealizer
Peter Kutz 2012



Depth of Field: Integrate over a lens

13

•The standard CIS460/560 style single-ray ray-tracer’s camera behaves as 
a pinhole camera: all rays originate from a single point

•Real cameras have rays that begin at slightly different points and then 
pass through a lens which refracts rays differently based on where they 
transmit through the lens

•One possible approach: Jitter the camera’s position, but leave the image 
plane stationary.



Soft Shadows: Integrate over a light source

14

•Think of an area light as a infinite number of point lights spread out of the 
surface of a piece of geometry, casting an infinite number of slightly 
varied shadows.

•In a distributed ray-tracer, for each shadow feeler, select a random point 
on the surface of the area light, and treat that point as a point light. 
Repeat this process over and over and average the result!

Hard shadow Soft shadow



Shading: Integrating over BRDFs

15

•At it’s most basic level, a BRDF simply defines how a ray will leave a 
surface given how it intersected with the surface and the normal of the 
intersection

•A perfectly reflective BRDF is easy to implement: each incoming ray will 
always have the same outgoing ray for every sample



Shading: Integrating over BRDFs

16

TAKUA Render
Yining Karl Li 2012



Shading: Integrating over BRDFs

17

•At it’s most basic level, a BRDF simply defines how a ray will leave a 
surface given how it intersected with the surface and the normal of the 
intersection

•A perfectly reflective BRDF is easy to implement: each incoming ray will 
always have the same outgoing ray for every sample

What if we have a BRDF that 
across samples doesn’t return the 
same result given a fixed input ray?



Shading: Integrating over BRDFs

18

•Example case: glass
•Real glass both refracts and 

reflects!
•We need to consider two 

different possible ray 
interactions with the surface: 
the BRDF defining reflection, 
and the BTDF (Bidirectional 
Transmission Distribution 
Function) defining refraction 
and transmission

•BRDF + BTDF = BSDF: 
Bidirectional Scattering 
Distribution Function

TAKUA Render
Yining Karl Li 2012



Shading: Integrating over BRDFs

19

•To implement a BSDF, we send 
multiple rays from a pixel. When each 
ray hits a glass surface, we randomly 
choose whether that ray reflects or 
refracts.

•We accumulate the result of multiple 
random reflection/refraction samples 
to get the final half reflected, half 
refracted result

•We can change how reflective or 
refractive the glass is by simply 
adjusting the probability distribution 
for when we choose what to do with 
each ray



Shading: Integrating over BRDFs

20

•Interesting oddball case: diffuse 
surfaces!

•In real life, diffuse surfaces are actually 
reflective- they just reflect in all 
directions, completely randomly!

•We can simulate this using distributed 
ray-tracing: send multiple rays, and for 
each ray, choose a totally random 
direction to send it off in!



Shading: Integrating over BRDFs

21

•Interesting oddball case: diffuse 
surfaces!

•In real life, diffuse surfaces are actually 
reflective- they just reflect in all 
directions, completely randomly!

•We can simulate this using distributed 
ray-tracing: send multiple rays, and for 
each ray, choose a totally random 
direction to send it off in!

•What if we change the probability 
distribution from totally random to 
something that favors a certain 
direction?



Shading: Integrating over BRDFs

22

•Combining diffuse and reflective: glossy case
•If we modify the diffuse case to use a probability distribution biased in 

some direction, we can generate true glossy surfaces. 



Shading: Subsurface Scattering

23

•Subsurface scattering describes how light interacts with translucent objects; 
light enters a surface, scatters multiple times randomly within the surface, 
and exits at a different point from which it entered

•Examples of subsurface scattering materials are milk, skin, marble, wax, 
etc.

Arion Render
Random Control 2012



Shading: Subsurface Scattering

24

•Brute-force scattering is implemented by 
choosing a random scatter direction and 
distance for each ray that has entered a 
surface; each time a ray reaches the end 
of its scatter distance, we pick a new 
distance and direction until the ray exits 
the surface

•Brute-force scattering can be extremely 
computationally expensive, as a LOT of 
distributed ray-tracing is required 



Distributed ray-tracing and Parallelizing

25

•Fundamentally, distributed ray-tracing simply means casting multiple rays 
to evaluate properties that cannot be correctly represented with a single 
ray path

•As we have seen from the previous examples, the runtime for distributed 
ray-tracing effects can be considerably non-deterministic!
•BSDF evaluations can be especially difficult to predict runtimes for, 

even more so when subsurface scattering is involved
•Parallelizing by ray paths/pixels can get extremely inefficient when 

complex distributed ray-tracing is involved. Parallelizing by ray can save 
us a lot of wasted compute!



26

Global Illumination and Path-tracing

Bertrand Benoit 2010



What is Global Illumination?

27

TAKUA Render
Yining Karl Li 2012Without GI

Dark shadows where 
surfaces are not in 
direct view of light 
sources

•Global illumination 
refers to the complete 
lighting solution in a 
scene that includes both 
the direct illumination 
from light sources and 
the indirect illumination 
from light bouncing off 
of non-emitting surfaces



What is Global Illumination?

28

•Global illumination 
refers to the complete 
lighting solution in a 
scene that includes both 
the direct illumination 
from light sources and 
the indirect illumination 
from light bouncing off 
of non-emitting surfaces

TAKUA Render
Yining Karl Li 2012With GI

Areas not in direct 
view of the light 
source are lit by 
indirect light 
bouncing off of 
surfaces



What is Global Illumination?

29

•Global illumination effects include diffuse color bleeding, reflective and 
refractive caustics, volumetric scattering, etc. 

•Basically, GI encompasses all of the lighting effects that are NOT JUST 
results of direct lighting

With GIWithout GI



What is Global Illumination?

30

We now have almost all of the pieces we 
need to implement GI. We just need one 

more thing...



Monte Carlo Integration

31

•In order to generate an image with global illumination, we need to solve 
the rendering equation (from last week). Unfortunately, the rendering 
equation is somewhere between extremely difficult to impossible to solve 
analytically

•GI requires integrating across all incoming light from every possible 
direction. How can we “gather” light from every possible direction? 



Monte Carlo Integration

32

•Without going into the math, Monte Carlo integration essentially refers to 
numerical techniques through which a proper solution to a function is 
arrived at through repeated random sampling

•In distributed ray-tracing, we converge on a proper representation of 
various phenomenon by repeatedly randomly sampling a probability 
distribution function 

•We can adapt this idea to arrive at a GI solution!
•We can randomly sample the emittance coming in to a given point from 

every direction, and over time converge to the total incoming emittance 
for the given point



33

Basic Path Tracer
Yining Karl Li 2012

Since Monte-Carlo integration converges at a solution through repeated random 
sampling, high variance can occur when there aren’t sufficient samples

1 Iteration



34

Basic Path Tracer
Yining Karl Li 2012

20 Iterations

Since Monte-Carlo integration converges at a solution through repeated random 
sampling, high variance can occur when there aren’t sufficient samples



35

Basic Path Tracer
Yining Karl Li 2012

250 Iterations

Since Monte-Carlo integration converges at a solution through repeated random 
sampling, high variance can occur when there aren’t sufficient samples



Monte Carlo Integration: GPU Implications

36

•Monte Carlo style techniques are extremely expensive to run on the CPU, 
since they require a huge number of samples in order to converge to a 
usable solution

•However, each sample is computationally independent from all other 
samples! Thus, Monte Carlo style techniques are often embarrassingly 
parallel.

•What does this imply about Monte Carlo techniques on the GPU?... 



37

So how do we implement a Monte Carlo 
technique to calculate a global illumination 

solution?



Path-tracing

38

•Monte Carlo path-tracing is a 
full, unbiased method to solve 
the global illumination problem

•Path-tracing is a brute force 
solution, first proposed in 
1986, but not fully 
implemented in a practical 
production environment until 
the past few years. 

•In many ways, path-tracing can 
be viewed as distributed ray-
tracing taken to its absurd 
logical extreme

The Third and the Seventh
Alex Roman



Path-tracing Algorithm

39

•1. For each pixel, shoot a ray into the scene

•2. For each ray, trace until the ray hits a surface. Upon hitting a surface, 
sample the emittance and BRDF for the surface and then send the ray in a 
new random direction

•3. Continue bouncing each ray around until a recursion depth is reached

•4. Repeat steps 1-3 over and over and continuously accumulate the result 
until a final image begins to converge



Path-tracing Algorithm

40

•So in pseudocode...

color3 pathTrace(int depth, ray r, vector<geom> objects, vector<lights> light_sources){

[determine closest intersected object j, intersection normal n, intersection point p]

if(no object is hit){
return black;

}else{

if(object is light source){
return light_emittance;

}

r = evaluateBSDF(r, n, j.material);

return material_color * pathTrace(depth-1, r, objects, light_sources);
}

}

•Note that algorithmically, this is actually simpler than normal ray-tracing!



Path-tracing Algorithm

41

•But remember, we need to accumulate multiple samples and take an 
average...

color3 Accumulate(int iterations){

color3 accumulatedColor;

for(int i=0; i<iterations; i++){
accumulatedColor += pathTrace()

}

return accumulatedColor/iterations;
}

•Note that Accumulate() is run for each pixel in the image



Path-tracing Algorithm

42

•Unfortunately, as we saw earlier, path-tracing requires a huge number of 
samples per pixel in order to converge to a reasonably smooth solution

•Biased techniques such as photon mapping arrive at a smooth solution 
faster, at the cost of blotchiness and numerical errors. Path-tracing has no 
blotches or numerical errors, but at the cost of noise that takes a huge 
number of samples to eliminate

•For these reasons, very few production renderers make use of pure CPU 
path-tracing



43

I want my path-tracer to render faster



Parallel Path-tracing

44

•Fortunately, much like ray-tracing, path-tracing is embarrassingly parallel!

•Remember how we converted recursive ray-tracing to iterative ray-tracing in 
Part 1? Our path-tracing algorithm here needs to be converted to run 
iteratively in a similar fashion.

•For parallel ray-tracing, parallelizing by ray path instead of by ray is slower, 
but overall still fairly acceptable. However, path-tracing, unlike ray-tracing, 
can be highly non-deterministic. 

•What does this imply about how we should parallelize the path-tracing 
routine?



Parallel Path-tracing

45

•Remember how we converted recursive ray-tracing to iterative ray-tracing in 
Part 1? Our path-tracing algorithm here needs to be converted to run 
iteratively in a similar fashion.

•For parallel ray-tracing, parallelizing by ray path instead of by ray is slower, 
but overall still fairly acceptable. However, path-tracing, unlike ray-tracing, 
can be highly non-deterministic. 

•What does this imply about how we should parallelize the path-tracing 
routine?

•We should parallelize by ray!



Parallel Path-tracing

46

•Fun experiment for you to try at 
home: try comparing smallptCPU, a 
small CPU pathtracer, with its sibling 
GPU version, smallptGPU:

•smallpt: http://
www.kevinbeason.com/smallpt/

•smallptGPU: http://
davibu.interfree.it/opencl/
smallptgpu2/smallptGPU2.html

•Expect smallptGPU to be between 
10 and 100 times faster than 
smallptCPU.

smallptCPU after 63 seconds

smallptGPU after 63 seconds

http://www.kevinbeason.com/smallpt/
http://www.kevinbeason.com/smallpt/
http://www.kevinbeason.com/smallpt/
http://www.kevinbeason.com/smallpt/
http://davibu.interfree.it/opencl/smallptgpu2/smallptGPU2.html
http://davibu.interfree.it/opencl/smallptgpu2/smallptGPU2.html
http://davibu.interfree.it/opencl/smallptgpu2/smallptGPU2.html
http://davibu.interfree.it/opencl/smallptgpu2/smallptGPU2.html
http://davibu.interfree.it/opencl/smallptgpu2/smallptGPU2.html
http://davibu.interfree.it/opencl/smallptgpu2/smallptGPU2.html


47

I want my path-tracer to render faster



Path-tracing Algorithm

48

•What is the most expensive part of this algorithm?

color3 pathTrace(int depth, ray r, vector<geom> objects, vector<lights> light_sources){

[determine closest intersected object j, intersection normal n, intersection point p]

if(no object is hit){
return black;

}else{

if(object is light source){
return light_emittance;

}

r = evaluateBSDF(r, n, j.material);

return material_color * pathTrace(depth-1, r, objects, light_sources);
}

}



Path-tracing Algorithm

49

•What is the most expensive part of this algorithm?

color3 pathTrace(int depth, ray r, vector<geom> objects, vector<lights> light_sources){

[determine closest intersected object j, intersection normal n, intersection point p]

if(no object is hit){
return black;

}else{

if(object is light source){
return light_emittance;

}

r = evaluateBSDF(r, n, j.material);

return material_color * pathTrace(depth-1, r, objects, light_sources);
}

}

Tons of intersection testing 
is where the majority of 
our compute is going!


