
1

Graphics, Mobile Computing,
APIs and Life

Dave Shreiner
Director, Graphics and GPU Computing

ARM, Inc.
12 November 2012

Sunday, December 2, 12

mailto:Dave.Shreiner@arm.com?subject=Comments%2520from%2520graphics%2520talk%2520at%2520Penn
mailto:Dave.Shreiner@arm.com?subject=Comments%2520from%2520graphics%2520talk%2520at%2520Penn

2

Agenda
§ ARM and the IP Business
§ That Computer in your Pocket
§ Graphics: Techniques and Religion
§ APIs – using them, designing them, and living to tell about it

Sunday, December 2, 12

3

Who is ARM, and what do we do?
§ ARM creates designs (IP) for digital processors

§ CPUs
§ GPUs
§ Bus fabric
§ Memory controllers
§ Physical IP (memories, caches, etc.)

§ We don’t make anything physical
§ Our customers use our designs

to make System-on-a-Chip (SoC)
§ Most dies are a mix of IP from

various places
§ Multiple vendors
§ In-house designs (“magic sauce”)

Die shot of TI OMAP 3530

Sunday, December 2, 12

4

The First ARM Silicon: 26th April 1985
§ Acorn Computer needed better CPU performance

§ Evaluated processors from several companies
§ All a bit slow and much too expensive

§ 1985: Called simply the “ARM” (Acorn RISC Machine)
§ 25,000 transistors, 3.0µm, 6MHz, 120mW, 50mm2

§ Steve Furber designed the hardware to implement the
instruction set developed by Sophie Wilson

“You can’t build a £500 micro
around a £100 CPU”

 Steve Furber

Sunday, December 2, 12

5

The ARM Business Model
§ Global leader in the development of semiconductor IP

§ R&D outsourcing for semiconductor companies

§ Innovative business model yields high margins
§ Upfront license fee – flexible licensing models
§ Ongoing royalties – typically based on a percentage of chip price
§ Technology reused across multiple applications

§ Long-term, secular growth markets

Approximately 750 licenses
Grows by 60-90 every year

More than 250 potential
royalty payers

>6bn ARM-based chips in ’10
>25% CAGR over last 5 years

Sunday, December 2, 12

6

Graphics in an Embedded/Mobile World
§ Life’s different when you’re connected to a battery

§ People have … expectations

§ Mobile vs. Embedded
§ mobile usually implies limited battery-powered

§ mobile phone, MP3 player, GPS
§ embedded may be “tethered”, or have more substantial batteries

§ automotive, set-top box, etc.

§ Our design space axes
§ Power
§ Performance
§ Silicon-die Area

Sunday, December 2, 12

7

Desktop vs. Embedded Footprint

§ Graphics card – 250W
§ System Power – 600+ W

§ Graphics Clock – 772MHz
§ 16-way PCIe 2.0 (192.4 GB/s)

§ On-board memory – 1.5 GB GDDR5
§ 3 Billion gates @ 40 nm

} SoC power < 1W (perhaps 3 for tablets)
} Graphics Clock – 533 MHz
} Shared memory bus ~ 10GB/s
} Unified memory architecture
} On-core memories ~500Kb

Sunday, December 2, 12

8

Power
§ The overriding design concern

§ Anything an SoC does consumes energy
§ but not all operations cost the same

§ Classifying operations
§ On-die are usually lowest power

§ the one place an IP-vendor has some control
§ On-chip are still manageable

§ e.g., snooping caches
§ Off-chip operations are most costly

§ particularly accessing RAM (“main memory”)

§ Bandwidth = Power

Sunday, December 2, 12

9

Performance
§ Measured (badly) in the same way as any other GPU

§ “Speeds and feeds”
§ Triangles/s
§ Pixels/s
§ Texels/s

§ Industry benchmarks
§ Futuremark’s Benchmarks

§ Samuari & Proxycon – OpenGL ES 1.1
§ Taiji Girl & Hoverjet – OpenGL ES 2.0

§ GLbenchmark
§ GLB 2.5 Egypt

§ And they always ask about “Bandwidth”
§ It’s like asking how long it takes to drive …

Sunday, December 2, 12

http://glbenchmark.com/
http://glbenchmark.com/

10

Die Area
§ Each square millimeter of ASIC silicon costs about 10¢

§ pretty much regardless of manufacturing processing

§ Factors that contribute to area
§ Number of gates
§ Memory sizes

§ Registers
§ Internal scratch memories
§ Caches

§ Memory libraries
§ EDA tool-chain
§ Manufacturing process

§ Power profiles (HP, LP, G)
§ High-performance profiles

Sunday, December 2, 12

11

Modern Graphics Pipelines
§ Molnar, et. al. proposed a classification for graphics

architectures
§ sort first, sort middle, or sort last

§ Most modern GPUs are sort middle machines
§ there’s only one framebuffer, and results are determined per-pixel

Vertex
Processing Rasterization Fragment

Processing

Sunday, December 2, 12

12

Pros and Cons for “Traditional” GPUs
Pros

§ Minimized latency
§ Employ lots of parallelism

for massive performance
§ Relatively simple designs

Cons
§ Lots of area required for

all that parallelism
§ Uses lots of bandwidth
§ Uses lots of power
§ Limited scalability for

pixel shading
§ “Brute force” misses

some optimizations
§ No practical way to

interrupt rendering

Probably not the best solution for mobile computing

Sunday, December 2, 12

13

Memory and Framebuffers
§ Large in-core memories are undesirable

§ increase core area
§ require power to keep them updated

§ Framebuffers require lots of memory
§ multiple buffers: color, depth, stencil

§ may be multi-sampled, which multiples storage requirements
§ multi-buffering requires multiple sets

§ Requires lots of bandwidth to talk to those memories
§ Remember “Bandwidth = Power”

§ And how large should we make them?
§ nowadays, resolution is the new selling point

Sunday, December 2, 12

14

Tiled Graphics Pipelines
§ Partition the problem to move parallelism farther up the

pipeline
§ project geometric primitives into screen space, and then bin

§ need to record pipeline state for later use

§ still a sort middle architecture

Vertex
Processing Rasterization Fragment

Processing

Tiler

Sunday, December 2, 12

15

Tiling in a Nutshell
§ Partition framebuffer into tiles to minimize

on-core memory
§ assemble image in system memory

(x y z w)

(x y z w)

(x y z w)

(x y z w)

Attribute List #1

(x y z w)

(x y z w)

(x y z w)

(x y z w)

Attribute List #2
(0, 1, 3)

(3, 1, 4)

(1, 4, 7)

Polygon List

Sunday, December 2, 12

16

Advantages of Tiled Rendering
§ Binning allows each tile to be rendered separately

§ each bin has complete information for rendering a tile
§ permits parallel rendering of tiles

§ allows linear pixel-fill scaling
§ that’s really important as screen geometries increase in size

§ Allows “interruptible” rendering
§ discard and restart rendering for a tile
§ provides a natural boundary for rendering jobs

§ Aids throughput slow memory systems
§ multi-buffering allows processing of next tile while current tile awaits

write-back

Sunday, December 2, 12

17

Disadvantages of Tiled Rendering
§ Effectively always double-buffered

§ Single-buffering is challenging
§ possible, need to initialize memory with previously rendered tile

§ techniques like shadow passes are “inconvenient”

§ Additional latency due to binning operation
§ can’t start rendering until application issues swap-buffers

§ Additional memory required for primitive storage
§ need space for tile lists
§ driver may additional copies of application attribute data

§ VBOs (vertex-buffer objects) effectively remove this issue

Sunday, December 2, 12

18

Advanced Hierarchical Tiling

§ Lower memory bandwidth than linear tiling
§ High-performance scalable binning architecture
§ Multiple bin sizes efficiently decompose primitives for shading

§ Memory footprint now predictably related to scene complexity
§ Independent of primitive size and screen resolution

Sunday, December 2, 12

19

§ Mali-200
§ Entry level, OpenVG ® and OpenGL ® ES 2.0
§ Leading anti-aliasing for superior image quality
§ World’s most licensed OpenGL ES 2.0 core

§ Mali-300
§ Ideal configuration for mid range use cases
§ Graphics acceleration with OpenVG and OpenGL ES
§ Efficient energy and bandwidth usage

§ Mali-400MP
§ High performance OpenVG and OpenGL ES 2.0
§ World’s first multi-core embedded GPU
§ Scalable pixel processing up to 1080p displays
§ Leading power efficiency and reduced bandwidth

§ Mali-T604
§ Tri-pipe for performance and flexibility
§ GPGPU computing with OpenCL™ 1.1
§ State of the art bandwidth reduction
§ DirectX® 11 and next generation Khronos graphics standards

The Mali GPU portfolio

Sunday, December 2, 12

20

Unified Memory Considerations
§ SoCs generally share memory across all components

§ CPU, graphics, video, etc.

§ Benefits for graphics
§ effectively limitless graphics memory
§ sharing images (e.g., from video engine as textures) usually requires

no memory copying
§ potential advantages in systems with CPU coherence

§ Disadvantages for graphics
§ bus bandwidth shared among all devices

§ can affect latency

Sunday, December 2, 12

21

Adaptive Scalable Texture Compression

25.0000

31.2500

37.5000

43.7500

50.0000

8 5.12 3.56 2 1.28 0.89

PS
N

R
 (d

B
)

Compression Rate (bpp)

§ New texture compression standard developed by ARM
§ Adopted as standard texture compression for future OpenGL ES versions

§ Increased quality and fidelity at low bit-rates
§ Expansive range of input formats offers complete flexibility

§ Orthogonal choice of base format (L / LA / RGB / RGBA)
§ 2D and 3D textures, addition of high-dynamic range pixel formats

Sunday, December 2, 12

22

ASTC Texture Compression
§ Gradient-based

§ Per-texel “weights” specify interpolation in block-global color spaces
§ Weights can be coarsely quantized and sampled
§ Weights can be divided into planes for uncorrelated components
§ Chosen on a per-block basis

Sunday, December 2, 12

23

Transaction elimination

Maintain a list of signatures for each tile

...sigsig sig sig sig sig sig...

Sunday, December 2, 12

23

Transaction elimination

Compare to sigs calculated for frame N+1

... ...sigsig sig sig sig sig sig

sigsig sig sigsigsig sig

sig sigsig sigsig sig

sig sigsig

sig

sig sig

sig sig sig sig sig sigsigsig sig

sig sig sig sig sig sigsigsig sig

sig sig sig sig sig sigsig sig

sig sig sig sig sig sig

sig sig sig

Maintain a list of signatures for each tile

...sigsig sig sig sig sig sig...

Where signatures match, don’t write the tile

Sunday, December 2, 12

23

§ Surprisingly effective, even on FPS games and video

Transaction elimination

Compare to sigs calculated for frame N+1

... ...sigsig sig sig sig sig sig

sigsig sig sigsigsig sig

sig sigsig sigsig sig

sig sigsig

sig

sig sig

sig sig sig sig sig sigsigsig sig

sig sig sig sig sig sigsigsig sig

sig sig sig sig sig sigsig sig

sig sig sig sig sig sig

sig sig sig

Maintain a list of signatures for each tile

...sigsig sig sig sig sig sig...

Where signatures match, don’t write the tile

Sunday, December 2, 12

24

APIs and Power
§ This needs to be the new thought paradigm …

§ Industry’s calling in “Energy Efficient Programming”

§ For OpenGL (ES), there are a few things to keep in mind
§ Use texture compression
§ Manage FBOs carefully
§ Use buffer objects

Sunday, December 2, 12

25

Reducing Power with Buffer Objects
§ Tile-based renderers need to store graphics data for later rendering

§ this implies a lot of copying a lot of data

§ Situation is worsened by certain API idioms
§ client-side vertex arrays are evil
§ the problem is we can’t keep track of data changes from the application

§ all we get is a pointer to host memory
§ this forces us to make a copy at every draw call
§ if only we knew when the application updated the data hanging off that

pointer

§ Buffer Objects (particularly VBOs) can have a massive impact for
tile-based renderers
§ modifications to data are strictly controlled by the API

§ glBufferData, glBufferSubData, glMapBuffer, etc.

Sunday, December 2, 12

26

Being a Considerate Renderer
§ Indexed rendering (e.g., using glDrawElements) can be used

for good or evil
§ it’s also really useful for reducing redundant computation,
§ and can be engage transformed vertex caching
§ but, it can also really affect power

§ We essentially need to scan the index list to determine which
vertices you’re going to use
§ more bandwidth, more copying

§ A few pointers:
§ try to keep the range of your indices and VBOs of similar size
§ store indices in VBOs a well (it gives us more time to analyze them)

Sunday, December 2, 12

27

What I Do in My Day Job
§ “It’s been three years since I rendered my last triangle …” J

§ Officially, I label myself a “technologist” nowadays

§ I spend my days concentrating on three things:
§ Predicting the future
§ Wrangling API design
§ Email

Sunday, December 2, 12

28

Working with Technology Standards
§ About ½ my job is working with the Khronos Group

§ OpenGL, OpenGL ES, OpenCL, COLLADA, WebGL, WebCL, etc.

§ What Khronos does:
§ analyzes and integrates advancing technology into APIs
§ creates specifications
§ designs conformance testing suites

§ How this happens
§ Choose n engineers from m companies expressing k opinions

§ n ≥ m, k è ∞
§ discuss

§ a few good skills to have in this scenario
§ negotiation
§ mediation
§ leadership

Sunday, December 2, 12

29

When You Come for a Job
§ Programming skills

§ C, preferably C++
§ scripting language: Python, Perl

§ Communication skills
§ PowerPoint is everywhere
§ know how to write (English)
§ don’t be afraid to talk in front of a group

§ this isn’t strictly required, but will probably advance faster than any
other skill

§ Programming skills (addendum)
§ debuggers, profilers, assembly
§ understand caches, code locality, efficiency

Sunday, December 2, 12

